
International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017 1453
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

Improved Algorithm for Sorting via Heap Data
Structure

Ravi Prakash Rathore, Rohan Verma, Antriksha Somani, Sunny Bagga

Abstract— Software engineering dependably looks for better approaches for enhancing the execution and proficient usage of equipment.

This is accomplished fundamentally by actualizing different sort of plans and information structures to the projects for making them fill in as

proposed with less complexity. The planners dependably attempt to limit the equipment use however much as could be expected by

composing the proficient calculations that suites both the equipment and in addition programming. In the initial segment of this paper, we

have created a make-pivot algorithm which makes use of heap data structure to produce a PARTIALLY-SORTED LIST and in the second

part we have made some changes that takes the efficiency a step further with the help of insertion sort algorithm and after all this we combined

both of them to produce New sorting technique. In the later part, we see different graphs that show various cases in which our sorting

technique just outperforms native heap-sort by doing better CPU utilization.

Index Terms—Heap Data Structure, Algorithm profiling, Data Structure and Alogrithm, Sorting Algorithm and Analysis..

—————————— ——————————

1 INTRODUCTION

ata sorting is a crucial part in most of the real-time appli-

cations. There are various factors that are responsible for

achieving results which are efficient as well as reliable in

terms of hardware and software. These factors include time

complexities, no. of swaps and comparisons at the first place.

So, by holding this as a primary objective we focused on making

an algorithm that is efficient in terms of both space and time.

We took advantage of the heap data structure and its properties

and created the algorithm in such a way that it forms a partially

sorted list in linear-logarithmic time or O (n*log (n)) and further

we did research on how we must perform steps so as to get an

array of numbers that are sorted properly and we came across

some algorithms to achieve the end result. We found that the

sorting technique which is well suited is the insertion sort and if

we apply the insertion sort on the partially-sorted list then it per-

forms in its average-case scenario where the time complexity

is:

O(n2)

So, ultimately our new sorting technique’s theoretical complex-

ity in RAM model is

O(n2 + n ∗ log(n))[4]

The reason for doing this is because insertion sort is a stable

sort and performs extremely well in case of nearly-sorted list.

So, in this way we extirpated two short comes, one is that our

first algorithm which makes the use of heap data structure prop-

erty performs optimally and produces a partially-sorted list in

linear-logarithmic time and second is algorithm which applies

insertion sort in a specific way on the partially-sorted list and

produces a sorted list approximately in quadratic polynomial

time. Result turned out to be positive and our sorting algorithm

outperforms conventional heap sort technique practically de-

spite of being having a higher theoretical complexity. Thus, we

concluded that the practical performance metrics of our sorting

algorithm is more efficient than conventional heap sort sorting

technique.

2 RESOURCES WE USED

To make sure that our algorithm will work on different environ-

ment we used different compilers, these includes Intel C++

compiler and Microsoft Visual C++ compiler. For doing the pro-

filing we mainly focused on some profound profiler tools one of

them is Intel VTunes, the others are Microsoft VS Profiler and

Gprof. These tests are performed on Microsoft windows. These

are performed over the Intel Core 2 Duo processor with a

3072MB of RAM and Intel Core i5 Microarchitecture Haswell

processor with 8192MB of RAM. We categorized these in 3 test

beds that are given below:

(1) Test Bed 1 (CPU Time): Core 2 duo 2.10 Gigahertz,

3072MB of RAM, Microsoft Windows 8.1 Pro edition build 9600,

Microsoft Visual C++ compiler.

(2) Test Bed 2 (CPU Time): Core 2 duo 2.10 Gigahertz,

3072MB of RAM, Microsoft Windows 8.1 Pro edition build 9600,

Intel C++ compiler.

(3) Test Bed 3 (Memory Analysis): Core i5 Haswell 3.20 Gi-

gahertz, 8192MB of RAM (Quad core), Microsoft Windows 7 Ul-

timate edition build 7601, Intel Vtunes Amplifier 2017.

3 ALGORITHM

The algorithm 1 has primary arguments as A - the list itself, N

as number of elements in the list and rest are auxiliary argu-

ments initialized by the algorithm itself in later stages i.e. there

is no need of explicit initialization for these auxiliary argument.

MAKE-PIVOT algorithm basically creates a pivot or inflexion

point in list. This sorting technique is an in-place sorting tech-

nique so it does not need any extra space but a constant space

to carry out intermediate operations. The pivot so created after

D

————————————————

 Ravi Prakash Rathore, IES IPS Academy, Indore
 Rohan Verma, IES IPS Academy, Indore,
 Anatriksha Somani, IES IPS academy, Indore
 Sunny Bagga, IES IPS academy, Indore

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017 1454
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

applying MAKE-PIVOT algorithm separates the elements in list

in such a way that the elements on left of the pivot are always

smaller than elements on right of the pivot. Thus, we can apply

any sorting technique independently on both sides, the pivot

created is always positioned at the middle of the list so com-

plexity does not depend on position at which pivot is created.

Algorithm initially proceeds by dividing the list at the middle (af-

terwards known as pivot) there by creating a Max heap [5] on

the right side of the pivot growing in the direction away from the

pivot and a Min heap [5] on the left side of the pivot also growing

in direction away from the pivot so ultimately looks like following

figure:

Fig. 1. "Pivot Contruction"

ALGORITHM 1: MAKE-PIVOT (A, N, L, R, P, H1, H2)

L <- floor (N/2)

R <- N-1

REVERSE-MIN-HEAP (A [0:L-1], L)

MAX-HEAP (A [L: R], R)

P <- 0

H1 <- 0

H2 <- R

if A[L-1] > A[L]:

 SWAP(A[L], A[L-1])

while R>L:

SWAP(A[L-1], A[P])

 H1 <- H1+1

SWAP(A[L], A[R])

H2- <- H2-1

 if A[L-1]>A[L]:

 SWAP(A[L], A[L-1])

REVERSE-MIN-HEAPIFY (A, L-1,L, H1)

MAX-HEAPIFY (A [L: R], 0, H2)

R <- R-1

P <- P+1

stop

Data structure that we are using to develop sorting technique is

an Array because using that we can do random access and also

we are only holding some numbers in memory (talking a fixed

number of bits) not some big structure, thus compilers would

not have any issue in requesting a new contiguous block of

memory from MMU. But if the data structure is Linked List then

we have to worry about a lot of pointers and also the Linked list

is suitable when we are supposed to hold large or variable size

structure but this is not the case meanwhile. Also, while travers-

ing the Linked list we are doing random access continuously

from one node to another node which maximizes something

called cache misses or unavailability of the pages which would

add a number of redundant CPU cycles and thus hampering the

performance. Also, the heap data structure can be best repre-

sented as an Array so we always have advantage while using

array.

Now in Figure 1 we can see that the pivot is represented as P

and Min heap and Max Heap are well specified. Min heap can

also be called as Reversed-Min heap if we observe carefully in

Figure 1. Again, dissolve the Heap size for the Min heap i.e. set

H1 = 0. So, Min heap is now a heap of size “0” positioned at the

pivot and heap size for Max heap H2 remains as size of the right

half. The construction of the Reversed-Min heap is done via al-

gorithm 2 and corresponding heapify operation is performed via

algorithm 3. The construction of Max heap [4] [5] [7] is done via

default mechanism for creating Max heap. Now to proceed we

first compare the root or first element of both heaps, for Re-

versed-Min heap this element is at immediate left of the pivot

and for Max heap this element is at immediate right of the pivot.

If the root element of the Reversed-Min heap is greater than

root element of Max heap then swap these two elements and

vice-versa, this is done to separate the smaller and bigger num-

bers to left and right of pivot respectively. Now we enter the core

part of the algorithm, along with heap-sizes we maintain two

pointers P and R where P is initialized as 0 and R is initialized

as last element of the list. Now remember that we are using a

constant space but not any extra space every time we are mak-

ing modifications to list.

ALGORITHM 2: REVERSE-MIN-HEAP (A, N)

J <- floor(N-(N/2))

while J<N-1:

 REVERSE-MIN-HEAPIFY (A, J, N, 0)

 J<- J+1

stop

ALGORITHM 3: REVERSE-MIN-HEAPIFY (A, I, N, H1)

while 1:

 R <- (2*I)-(N+1)

 L <- R+1

 if R >= H1:

 M <- I

 if A[R] < A[M]:

 M <- R

 if A[L] < A[M]

 M <- L

 if M <> I:

 SWAP(A[I], A[L])

 I <- L

 continue

 else:

 stop

 if L<H1:

 stop

 if A[L]<A[I]:

 SWAP(A[L], A[I])

 stop

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017 1455
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

ALGORITHM 4: MAX-HEAPIFY (A, I, H2)

while 1:

 R <- (2*I) + 2

 L <- R-1

 if R<-H2:

 X <- I

 if A[R]>A[L]:

 L <- R

 if A[R-1] > A[L]:

 L <- R-1

 if L <> I:

 SWAP(A[I], A[L])

 I <- L

 continue

 else:

 stop

 if L>=H2:

 stop

 if A[L]>A[I]:

 SWAP(A[R-1], A[I])

stop

ALGORITHM 5: MAX-HEAP (A, N)

J <- floor ((N-2)/2)

while J>=0:

 MAX-HEAPIFY (A, J, N)

 J <- J-1

stop

Now we repeat the following process till R becomes less than L

(which is middle of list = N/2). One thing to notice is that leaf

nodes of the Reversed-Min Heap which are far away from the

pivot can be among the greater elements of the list which be-

long to right of the pivot and also the leaves of the Max heap

can be among the smaller elements which belong to left of the

pivot. This property of our augmented-list (having a Min Heap

and Max heap created respectively on left and right side of

pivot) is manipulated by the algorithm in further steps. For doing

this we decrement R pointer and increment P pointer and also

increment the size of Min heap H1 which is zero and decrement

size of Max heap H2.

 First, we swap immediate element on left of pivot and

element pointed by P pointer and we increment the size of the

Min heap H1 and also, we swap immediate element on right of

pivot and element pointed by R pointer and we decrement the

size of the Max heap H2 and then finally, we compare if the root

element of the Reversed-Min heap is greater than root element

of Max heap then swaps these two elements and vice-versa

along with the decrement of R pointer and increment of P

pointer. Repeat above process till condition turns false.

The result of the MAKE-PIVOT algorithm looks like following:

342 432 34 2112 23234 11113

ALGORITHM 6: NEW-SORT (A , N)

MAKE-PIVOT (A [0: N-1], N)

ISORT (A [0: floor (N/2) -1], floor (N/2))

ISORT (A [floor (N/2): N-1], N - floor (N/2))

stop

We can see that every element in left of the pivot is always

smaller than every element present on right of the pivot. This is

the sole purpose of MAKE-PIVOT algorithm and along with this

we get an almost sorted pattern on both sides of pivot. Now we

can apply insertion sort algorithm (ISORT) on both parts on left

and right independently which is described in algorithm 6.

First step in this NEW-SORT algorithm is MAKE-PIVOT algo-

rithm, we have already done that. The output of the MAKE-

PIVOT algorithm is processed further by applying the insertion

sort on left & right sides of pivot. The result we get is a sorted

list.

Look carefully that array indexing used is in C-style indexing i.e.

from 0 to N-1 not in FORTRAN style indexing i.e. from 1 to N.

The floor, continue and stop functions used here have usual

meaning as floor stands for Least Integer function, continue is

the programming construct from C language and stop means

terminate the algorithm. ISORT is standard insertion sort sorting

algorithm.

4 COMPLEXITY

Max-Heap has the complexity [4] = O(n)

Max-Heapify has the complexity [4] = O(log(n/2))

Reverse-Min-Heap has the complexity [4] = O(n)

Reverse-Min-Heapify has the complexity [4] = O(log(n/2))

The worst-case complexity of MAKE-PIVOT algorithm is given

below:

O(1) + O(n) + O(n) + O(1) + O(n) + O(n ∗ log(n))

= O(n ∗ log(n))

The worst-case complexity of our sorting NEW-SORT algorithm

is given below:

O(n ∗ log(n)) + O(n2) = O(n2)

Theoretical complexity of the sorting technique presented in this

paper in RAM model is much higher than that of Heap Sort sort-

ing technique. But practical performance of this algorithm out-

weighs the performance of Heap Sort.

5 PERFORMANCE METRICS

The performance of the algorithm is assessed on following cri-

teria:

(1) Time taken (in milliseconds).

(2) Memory utilization.

(3) Number of comparisons and swaps.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017 1456
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

5.1 Time taken

The various algorithms are profiled with respect to time defined

by CPU clock.

Fig. 2. Heap Sort vs New Sort (Unsorted , Visual C++ Compiler).

Fig. 3. Heap Sort vs New Sort (Unsorted , INTEL C++ Compiler).

As we can see in the depicted graphs in fig 2, 3, the profiling

is performed on an unsorted array on both the compilers. It is

clearly visible with this that the performance of our sorting algo-

rithm is far better than Heap Sort.

Fig. 4. Heap Sort vs New Sort(Almost sorted , Visual C++ Compiler).

Fig. 5. Heap Sort vs New Sort

(Almost sorted , INTEL C++ Compiler).

We applied same concept on the partially sorted array and

the results are shown in graph 4, 5

Fig. 6. Heap Sort vs New Sort (Sorted , Visual C++ Compiler)

Fig. 7. Heap Sort vs New Sort (Sorted , INTEL C++ Compiler).

Again, in the above graph 6, 7 we have taken the observa-

tions on the sorted array and we observed with the result that

the heap sort takes a lot of time on the sorted array as compared

to our sort. So, it is clear visible from the results on various test

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017 1457
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

beds that our sort performs much more efficiently in all the en-

vironment where the array might be sorted, unsorted or partially

sorted. The time taken by our “New Sort” is much less than the

Heap sort with the same input values. We can take the gradient

or slope of our sorting algorithm and heapsort in graphs and can

deduce that our sorting algorithm is approaching a finite value

on a very large input.

5.2 Memory Utilization

In order to verify the feasibility of algorithm, we perform several

tests using Intel VTune Amplifier 2017 performed over Intel

Core i5 processor. To prove that the result obtained from our

new sorting technique is much better than conventional heap

sort algorithm, we basically used hotspot analysis and memory

analysis on one of the implementation of our sorting technique.

Before comparing the performance we need to understand the

platform on which the test is performed. Intel Core i5 haswell

microarchitecture has three levels of caches namely L1, l2 and

L3. The L1 has latency cycle of about 4 Cycles, it has both the

instruction and data cache. The L1 cache only demands the

cache line from higher level cache such as L2 and L3 only and

only if there is a cache miss in L1 cache itself. The L1 cache

writes to L2 cache only with write-through operations. L2 and

L3 both share code and data with each other spontaneously.

DRAM also called as main memory loads the data/instruction

from storage and is only accessed if there is a cache line miss-

ing in L1, L2 and L3. Intel Core i5 haswell microarchitecture is

a load-store architecture in which instructions are pre-fetched

either in L1 cache or SRAM before they get executed and this

includes branch prediction and data forwarding, and also the

CPU might execute more or less number of instruction than it

actually have to execute. This technique is also called as spec-

ulative execution. Modern processors have pipeline execution

to support this speculative execution. The following memory

analysis has been done on both Heapsort and our NEW Sort

sorting technique. The memory analysis test [1] [2] has been

carried out on input of 1 million numbers(unsorted), the obser-

vations made to justify the less CPU time consumed by our

NEW Sort sorting technique as compared to Heapsort are:

Elapsed Time -: The total time used by profiler (Intel Vtunes

Amplifier) to execute the program/application and to profile it [3].

CPU Time -: Total time for which the program is actively exe-

cuted by CPU.This is important because the operating system

does schedule the programs/process and in order to calculate

the CPU time, the process context switching time and CPU time

for which the program is idle has to be removed. This is typically

calculated in seconds [3].

Memory Bound -: Memory bound measures a fraction of slots

where pipeline could get stalled because of store instructions.

This accounts for incomplete transient memory demand loads

that overlap with waiting time of program in addition to less triv-

ial cases where stores could imply back-pressure on the pipe-

line [3].

L1 Bound -: This metric shows how often machine was stalled

without missing the L1 data cache. This is expressed in percent-

age of clock ticks. The L1 cache has profoundly least access

time. However, in certain cases like data dependency, high la-

tency can be observed despite being satisfied by the L1 [3].

L2 Bound -: This metric shows how often machine was stalled

on L2 cache. This is expressed in percentage of clock ticks [3].

L3 Bound -: The L3 cache is inclusive cache i.e. shared by all

processor cores. This metric shows how often CPU was stalled

on L3 cache, or contended with a sibling Core (in this case we

have 4 cores). This is expressed in percentage of clock ticks [3].

LLC Miss Count -: The LLC (last-level cache) is the last, and

longest-latency, level in the memory hierarchy before main

memory (DRAM). Any memory requests missing here must be

serviced by local or remote DRAM, with significant latency. The

LLC Miss Count metric shows total number of demand loads

which missed LLC. Misses due to HW prefetcher are not in-

cluded [3].

DRAM Bound -: This metric shows how often CPU was stalled

on the main memory (DRAM).

This is expressed in percentage of clock ticks [3].

The Memory Bound is expressed as percentage of pipeline

slots. A pipeline slot is the hardware resource that is needed to

process one micro operation.

If we carefully compare the Memory Bound of Heapsort and

NEW sort, Memory Bound of our sorting technique represents

that more than 11% of CPU resources are wasted waiting for

memory operations to complete as in case of Heapsort just

0.1% of CPU resources are wasted waiting for memory opera-

tions to complete. But this is not a negative impact, we further

will show why exactly the result is like this in next section.

TABLE 1

PROFILING SUMMARY OF HEAPSORT

Our profiling results in table 1 and table 4 shows that L1

Bound of NEW sort technique is lower than Heapsort (clock

ticks for both can be calculated by CPU Time given), for analysis

of this we have to find which are exactly the hot zones (parts of

program which takes maximum CPU time) in both Heapsort and

NEW sort. Heapify Operation and Swap operation in Heapsort

are hot objects/spots in it. And only one hot spot in NEW sort

which works for most of the time is insertion sort operation be-

cause the function is responsible for producing a sorted list.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017 1458
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

TABLE 2

LATENCY CYCLE FOR HOTSPOTS OF HEAPSORT

In case of Heapsort, we see that most of CPU time is spent

in two function heapify and swap (hot spots), we can also see

that both functions are L1 and DRAM bound. The number of

elements in list is 1 million and so this should not fit fully into the

L1 cache but the “Average Latency” metric shows a latency of

8 cycles in case of heapify operation. This exceeds the normal

L1 access latency of 4 cycles.In table 2, we can see that the

swap operation also has “Average Latency” metric and shows

a latency of 9 cycles.

Again, we exceeded the L1 normal access latency of 4 cy-

cles, which often means that we have some contention issues

that could be either true or false sharing.

TABLE 3

Memory bandwidth (Heapsort)

True sharing can be easily avoided by adding padding so

that threads always access different cache lines. But in case of

only one thread, true sharing may not be possible. A cache line

size greater than a word is also a reason for False-Sharing. This

can further be attributed by looking at DRAM bandwidth for both

operations and these are 69% of total clock ticks. So, in conclu-

sion Heapsort uses the memory extensively and thus have

higher memory traffic than NEW sort technique. That is in

Heapsort we have used more swap operations than in our sort-

ing technique.

TABLE 4
PROFILING SUMMARY OF NEW SORT

Now coming to our NEW sort technique the L1 Bound and

DRAM bound are both lower than Heapsort technique.

TABLE 5

LATENCY CYCLE FOR HOTSPOTS OF NEW SORT

TABLE 6

MEMORY BANDWIDTH (NEW SORT)

Again we see that insertion sort is only hot spot in our sorting

technique and we can observe that memory bandwidth is 27.30

% of total clock ticks in accordance with the table 6. Thus, we

concluded that our sorting algorithm is using less memory band-

width or have less memory traffic because we have used less

number of swaps operation than Heapsort. We have done this

by making additional number of comparisons.

Recall that we noticed that memory bound of our sorting al-

gorithm is 11 % which is much higher than Heapsort which is

0.1 %. This attributes to the previous deduction of lower band-

width usage of memory by our sorting algorithm. Efficient sort-

ing algorithm can be designed if we can make additional com-

parisons to reduce number of swaps happening which is the

approach adopted while designing this algorithm.

5.3 Number of Comparisions and Swaps

To verify the analysis in previous section, we can see in table 7

that the NEW sort algorithm is clearly taking more number of

comparisons than the Heapsort but also taking less number of

swaps than Heapsort.

To stipulate the efficiency of our sorting algorithm over Heapsort

we have following facts: Swaps must be taking more CPU time

because it fetches data from memory to cache and then cache

to registers and finally back to cache.

Comparisons must be taking less CPU time (compared to

Swaps) because it accompanies following (in general):

(1) Fetching data from memory to cache [6].

(2) Fetching daat from cache to registers [6].

(3) Executing single compare operations on two registers

(which should be a little fasster than writing two integers into a

chache) [6].

Additionally, a conditional jump after a comparison may not be

taking more cycles because of: branch prediction and L1 code

cache. The first one will save from cleaning the pipeline due to

jump, the second one will save from memory access and oper-

ations decoding.

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 8, Issue 8, August-2017 1459
ISSN 2229-5518

IJSER © 2017

http://www.ijser.org

TABLE 7

COMPARISONS AND SWAPS BASED ON THE NUMBER OF INPUTS

6 CONCLUSION

The sorting algorithm presented is based on the fact that we

can make additional comparisons to reduce the number of

swaps and consequently less memory traffic. A similar approach

can be taken by using a k-ary heap data structure instead of a

binary heap data structure. All these kind of approaches give a

more efficient performance as compared to conventional

Heapsort sorting technique.

REFERENCES

[1] INTEL. 2017. Events for Intel Microarchitecture codename Haswell. (June

2017). Retrieved April 2, 2017 from https://software.intel.com/en-

us/node/597060.

[2] INTEL. 2017. Intel optimization manual, Appendix A Application Performance

Tools, Appendix B Using Performance Monitoring Events. (June 2017). Re-

trieved June 21, 2017 from http://www.intel.com/content/dam/www/pub-

lic/us/en/ documents/manuals/64-ia-32-architectures-optimization-manual.pdf

[3] INTEL. 2017. Intel VTune Amplifier Tutorials. (June 2017). Retrieved June 21,

2017 from https://software.intel.com/ en-us/articles/intel-vtune-amplifier-tutori-

als

[4] Donald Knuth. 1998. The Art of Computer Programming (2nd. ed.). Sorting and

Searching, Vol. 3. Addison-Wesley Professional, New York, NY.

[5] R. Schaffer and R. Sedgewick. 1993. The Analysis of Heapsort. J. Algorithm

(1993). https://doi.org/10.1007/ 978-3-540-31856-9_52

[6] Robin Skafte. 2015. Memory consistency in the Haswell multicore architecture.

(Dec. 2015). Retrieved June 27, 2017 from http://www.eit.lth.se/filead-

min/eit/courses/edt621/Rapporter/2015/robin.skafte.pdf

[7] I. Wegener. 1993. Bottom-Up-Heapsort, a new variant of Heapsort beating, on

an average, Quicksort (if n is not very small). Theoretical Computer Science

118 (1993), 81–98. https://doi.org/10.1016/0304-3975(93)90364-Y

http://www.ijser.org/
https://software.intel.com/en-us/node/597060
https://software.intel.com/en-us/node/597060
http://www.eit.lth.se/fileadmin/eit/courses/edt621/Rapporter/2015/robin.skafte.pdf
http://www.eit.lth.se/fileadmin/eit/courses/edt621/Rapporter/2015/robin.skafte.pdf

